Step of Proof: fseg_select
11,40
postcript
pdf
Inference at
*
2
1
1
I
of proof for Lemma
fseg
select
:
1.
T
: Type
2.
l1
:
T
List
3.
l2
:
T
List
4. ||
l1
||
||
l2
||
5.
i
:
. (
i
< ||
l1
||)
(
l1
[
i
] =
l2
[((||
l2
|| - ||
l1
||)+
i
)])
l2
= (firstn(||
l2
|| - ||
l1
||;
l2
) @
l1
)
latex
by Assert
l1
= nth_tl(||
l2
|| - ||
l1
||;
l2
)
latex
1
: .....assertion..... NILNIL
1:
l1
= nth_tl(||
l2
|| - ||
l1
||;
l2
)
2
:
2:
6.
l1
= nth_tl(||
l2
|| - ||
l1
||;
l2
)
2:
l2
= (firstn(||
l2
|| - ||
l1
||;
l2
) @
l1
)
.
Definitions
s
=
t
,
type
List
,
nth_tl(
n
;
as
)
,
n
-
m
,
||
as
||
origin